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ABSTRACT

ON THE DEVELOPMENT OF SELF-ADAPTING
(RANS/LES) TURBULENCE MODELS FOR FLUID

SIMULATION AT ANY MESH RESOLUTION

SEPTEMBER 2007

JASON A. GADEBUSCH

B.S., WORCESTER POLYTECHNIC INSTITUTE

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor J. Blair Perot

Solving the Navier-Stokes equations using direct numerical simulation (DNS) is

computationally impractical, especially at high Reynolds numbers. Recent techno-

logical advances in supercomputing have paved the way for Large Eddy Simulations

(LES) to circumvent this problem by resolving large scale turbulence motions and

modeling only the small (subgrid) scales. However, LES modeling still requires ad-

vanced knowledge of the turbulence (integral length scale must lie in the inertial

range) and LES models are currently very simplistic. Because of this, there has been

considerable interest in hybrid turbulence models, which can perform either Reynolds

Averaged Navier-Stokes (RANS) modeling or Large Eddy Simulation (LES). With a

hybrid model, one can obtain initial predictions with coarse meshes (RANS) or more

accuracy can be obtained with finer meshes (LES). The self-adapting model pro-

posed in this work is fundamentally different from prior LES models and current

hybrid models in that it achieves a completely natural evolution from RANS to LES
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to (with enough mesh resolution) DNS. In this work, transport equation (RANS)

models are used to predict the subgrid-scale stress tensor. The model predictions are

compared to DNS data of isotropic decaying turbulence, and the results indicate that

this modeling approach is practical and efficient. In addition, this approach is ex-

tensible and not restricted to a particular (RANS) transport equation. Theoretically

any transport equation model can be utilized.
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CHAPTER 1

INTRODUCTION

Turbulence models are frequently classified by the ratio of how much turbulent

energy is represented by the model compared to how much turbulent energy is com-

puted via first principles. RANS (Reynolds averaged Navier-Stokes) models represent

the most turbulent energy in the model. LES (large eddy simulation) computes con-

siderably more of the turbulent energy via first principles and DNS (direct numerical

simulation) simulates all the turbulent energy correctly and models none. If a more

detailed terminology is desired, in between RANS and LES lies URANS (unsteady

RANS) and VLES (very large eddy simulation). It is sometimes useful to use the term

QR-LES (quasi-resolved LES) referring to an LES simulation that is very nearly DNS.

The range of these turbulence models are shown in Figure 1.1 in relation to a 3D tur-

bulent energy spectrum. Each model, tries to represent the energy in the spectrum

to the right of the model’s name.

Classic subgrid-scale models are algebraic in nature and assume that equilibrium

is present between the unresolved and resolved scales. The motivation for using a

transport equation model is both theoretical and practical. Theoretically, a transport

equation model can capture the inherently non-equilibrium subgrid-scale turbulence

physics more accurately. Practically, a transport equation based model can easily

transition to a RANS or URANS model at coarse mesh resolutions. In low Mach

number flows, the solution for the resolved pressure dominates the calculation time,

and the solution of additional transport equations are not expected to incur a large

performance penalty.

1
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Figure 1.1. Illustration of turbulence modeling (RANS-DNS) on a 3D energy spec-
tra.

Very recently there have been a number of hybrid turbulence models developed

that are designed to be able to perform over a broader range of the spectrum (i.e.

URANS down through LES) depending on the situation. For example, the very

popular DES (detached eddy simulation) model [24] behaves like a RANS or URANS

model near walls, but away from walls the lengthscale is changed to the mesh size and

the model has an LES character. Other hybrid models do not change their character

based on location relative to a wall, but on whether the mesh is much smaller than

the energy containing turbulence scales (leading to LES) or not (leading to RANS or

URANS). The earliest implementation of such an approach Speziale [25] used classic

LES (Smagorinsky) and RANS (k/ε) models to solve for both an LES and a RANS

eddy viscosity and then blended these two viscosities together based on a function

of the mesh size. Girimaji [10] has developed a hybrid model that can change its

character based on input from the user (the user sets the desired ratio of modeled

2
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turbulent kinetic energy). The SAS model of Menter [14] is an attempt to fix the

lengthscale deficiency of DES. The SAS idea has also been applied to k/ε models

(and involves adding another term to the dissipation equation similar to the RNG

correction).

In practical applied simulations it is not always possible to ensure that the mesh

spacing lies in some inertial or self-similar regime. This occurs very near walls, where

there is no inertial range, or because the flow is too complex to predict these ranges a

priori. In addition, in many situations it is wasteful to perform LES in many regions

of the computation (flat plate boundary layers and simple mixing layers) where RANS

models are known to perform quite well. LES becomes more useful if it can function

in the RANS limit as well. Classic LES models can not function in the RANS (coarse

mesh) limit because the mesh size in RANS is not a useful indicator of the turbulent

length scales. The mesh size is also not appropriate in the DNS (fine mesh) limit.

In this thesis, a self-adapting turbulence modeling approach is shown that works for

any mesh resolution and over the entire energy spectrum. It can therefore do, RANS,

URANS, VLES, LES and even DNS. More importantly, the character of the model is

not set by the user or geometric location, but instead will adapt to whatever level the

mesh can support. The proposed approach therefore models only as much turbulent

kinetic energy is necessary (for a given mesh) and resolves as much of the energy

using first principles as possible. It is not technically correct to consider the proposed

approach to be a hybrid model in the classic sense (though it has many similarities

to those models) because it does not blend an LES and a RANS model together. The

proposed model is closer to DES in philosophy in that it is a single set of transport

equations that changes its character (RANS, LES or DNS) depending on the flow

situation. However, in contrast to DES this change does not depend on the distance

to the wall, but rather on the available mesh resolution.
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1.1 Isotropic Decaying Turbulence

In order to validate a new approach to turbulence modeling, DNS simulations for

isotropic decaying turbulence (similar to [6]) were obtained for comparison against

model predictions. Admittedly isotropic decaying turbulence is not a very complex

flow, however its simplicity allows for rapid testing and implementation at a low cost.

This is a necessary step toward the development of any new modeling approach.

Figure 1.2 shows a mid-plane slice of an initial condition 256x256x512 isotropic field

for reader visualization.

Figure 1.2. Mid-plane slice (x-y plane) through initial 256x256x512 isotropic field,
Re = 640.

It is apparent from Figure 1.2 that the 256x256x512 initial condition appears

turbulent and clearly isotropic (no preferential direction for fluid movement). It

will be shown that the proposed approach does indeed give good predictions for

4
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the turbulent quantities for this test case. However, it must be stressed that this

methodology can easily be applied to any flow field, not just isotropic turbulence.

5
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CHAPTER 2

MATHEMATICS

2.1 Mathematical Preliminaries

The classic mathematical theory behind RANS and LES makes these two mod-

eling approaches look fundamentally different. RANS is based on ensemble averages

and LES on filtering. At first glance, the possibility of a single model that does

both (without some sort of switch or blending function) seems remote. However,

a closer examination by Germano [8] revealed some very important insights. Most

importantly, the exact but unclosed governing equations for RANS and LES (and

URANS, VLES and DNS) are mathematically identical. While the RANS equations

can be derived from the assumption of ensemble averaging and the LES equations

from filtering operations, these assumptions are overly restrictive and neither system

must be derived with those assumptions. The only required assumption is that the

velocity field can be split into two parts and that this splitting operation commutes

with differentiation. With this assumption the equations for turbulence evolution are

(from Appendix A)

∂ui

∂t
+

∂

∂xj

(ui uj) = − ∂p

∂xi

+ ν
∂2ui

∂x2
j

− ∂Rij

∂xj

(2.1)

where ui and p are the computed velocity and pressure and Rij = uiuj − ui uj is the

unknown turbulent stress tensor. The exact (but unclosed) evolution equation for

this stress tensor is
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∂Rij

∂t
+ uk

∂Rij

∂xk

= ν
∂2Rij

∂x2
k

− (Rjk
∂ui

∂xk

+ Rik
∂uj

∂xk

)− ∂

∂xk

Tijk

−(<
∂p

∂xi

, uj > + <
∂p

∂xj

, ui >)− 2ν <
∂ui

∂xk

,
∂uj

∂xk

> (2.2)

where the bracket operation is given by < ai , bj >≡ aibj − ai bj and the turbulent

transport is defined by Tijk ≡ uiujuk−ūiRjk−ūjRik−ūkRij−ūiūjūk. The well known

closure problem arises when the evolution equations (for a set of statistics) contain

additional statistics to the set in consideration. Without the additional statistics,

these equations cannot be solved for. These equations therefore have more unknowns

than equations and are said to be unclosed. In order to solve these equations, models

are used to represent the unknowns and hence a solution can be obtained. The

turbulent transport and bracketed terms represent these unknown terms and will

require a model if the system is to be solved.

In RANS the overbar might denote an ensemble average. In LES the overbar

might be an explicit filtering operation. However, it can also be an implicit operation,

because in practice (when these equations are modeled and then solved on a computer)

the overbar operation is never actually performed. In this case it is assumed that an

overbar represents whatever the calculation computes. It is not possible to prove that

an implicit filter commutes with differentiation but it is a fairly reasonable assumption

to make (at least to first order).

To accurately model some of the terms in 2.1 and 2.2, a third ’scale’ equation

is often postulated that captures the turbulent energetic length or timescale. The

epsilon equation [12] is perhaps the most commonly used scale equation, but omega

(inverse timescale) [26] and lengthscale equations [22, 16] also are possible and can be

advantageous. These scale equations can, in theory, be derived from first principles

but the number of modeling assumptions, in practice, makes them largely empirical.
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Starting from these exact equations numerous modeling approaches are possible.

In order of increasing simplicity a brief description is given for some of the more

common approaches. Reynolds stress transport (RST) models use a modeled form of

equation 2.2. The more popular two equation RANS models (such as k/ε or k/ω) are

a simplification of equation 2.2 from a tensor equation to a scalar equation (by taking

its trace). The primary unknown, Rij must then be reconstructed from this scalar

kinetic energy, k, using a hypothesized algebraic relation such as the eddy viscosity

hypothesis. One equation models, such as the Spalart-Allmaras model [23] used in

DES [24], solve a single transport equation directly for the eddy viscosity and use an

algebraic expression for the lengthscale (such as the distance to the wall). Classic

LES models (such as Smagorinsky and its variants) are the simplest of all, as they

solve only 2.1 and algebraically obtain the necessary length and timescales from the

mesh size and the resolved velocity gradients. Traditionally, LES models have used

the simplest modeling approach because of the issue of cost. Early attempts at using

more complex transport equations were deemed not worth the extra effort. Deardorff

[7] used a RST model and Schumann [21] used a k/ε model. Models and computing

power have changed considerably in the 30 years since those first simulations. Some

more recent LES models now carry a single transport equation. This is certainly the

case in DES, and a kinetic energy transport equation was used by Ghosal e.t. al. [9].

As the mathematical analysis of Germano [8] makes clear, there is no fundamental

reason why these more complex modeling approaches (used currently only by RANS

models) can not also be applied to LES. The apparent natural evolution of turbulence

models to include more physics and therefore complexity, suggests that two-equation

transport models for LES are, in fact, the next logical step.
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2.1.1 Two-Equation Self-Adapting LES Model

The k/ε system is used in this work in order to reach the largest audience possible.

There are very good reasons to prefer other two-equation model systems. However,

since all two-equation transport models are closely related, the proposed modeling

ideas can be easily generalized to these other transport equation models. The unclosed

equations 2.1 and 2.2 will be modeled using the following transport equations,

∂ui

∂t
+

∂

∂xj

(ui uj) = −∂(p + 2
3
k)

∂xi

+
∂

∂xj

[(ν + νT α)(
∂ui

∂xj

+
∂uj

∂xi

)] (2.3)

∂k

∂t
+

∂

∂xj

(kuj) =
∂

∂xj

[(ν +
νT

σk

)
∂k

∂xj

] + αP − ε (2.4)

∂ε

∂t
+

∂

∂xj

(εuj) =
∂

∂xj

[(ν +
νT

σε

)
∂ε

∂xj

] +
ε

k
[Cε1P − Cε2ε] (2.5)

where the overbar on the velocity and pressure have been dropped for convenience.

The production is given by P = νT (ui,j + uj,i)ui,j and eddy viscosity is given by

νT = Cµ
k2

ε
( k

k+kr
). The addition of the ratio of model to total turbulent kinetic energy

( k
k+kr

) was included in the eddy viscosity formula to help adjust the turbulent viscosity

at any mesh resolution. The constants are fairly standard k/ε constants, Cε1 = 1.55,

σε = 1.2, σk = 1.0, Cµ = 0.18. The parameter Cε2 = 11
6
f + 25

ReT
f 2 is sensitive to

the local turbulent Reynolds number ReT = k2

νε
of the modeled turbulence via the

function f = ReT

30
(
√

1 + 60
ReT

−1) as per the analysis of Perot and de Bruyn Kops [16].

This varies Cε2 from its theoretical limits of 11/6 at high Reynolds numbers to 3/2

at low Reynolds numbers. Any Reynolds number dependent Cε2 would probably be

sufficient. Reynolds number dependence is important in LES because the effective

turbulent Reynolds number ReT = k2/νε gets smaller as the mesh is refined (and

goes toward zero in DNS). For incompressible flow, the pressure in 2.3 is determined

from the constraint uj,j = 0.
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2.2 Backscatter of Energy

One key component of a self-adaptive turbulence model is that it must be able

to backscatter energy from the unresolved (modeled) turbulence to the calculated

(resolved) velocity field. For example, a fine grid (1283) simulation of isotropic tur-

bulence would resolve most of the energy and very little would need to be modeled.

However, if this simulation were set up incorrectly, and most of the energy were de-

fined to be modeled and very little resolved (i.e. initialized from a RANS simulation),

the adaptive turbulence model should displace energy from the modeled kinetic en-

ergy and energize the resolved velocity field to correct this error. Figure 2.1 illustrates

this desired effect of backscatter and forward scatter for a 1d energy spectra. Here the

resolved turbulence is on the left and the modeled turbulence is to the right (shaded),

the arrows indicate the direction of energy flow.

Figure 2.1. Illustration of backscatter and forward scatter on a 1D energy spectra.
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With a feature to control the flow of energy, a turbulence model could indeed give

accurate flow predictions, correct errors in the initial conditions, and most impor-

tantly, perform these functions without any user intervention. The idea of allowing

backscatter in a turbulence model is not a new one. It has been shown by Chasnov [3]

and Carati et al. [1], that the −5/3 power law in isotropic decay is better predicted

by LES (dynamic) models that account for backscatter. Along similar lines, classical

DES can not backscatter energy but it has been recently shown by Piomelli et al. [18]

that adding noise, a crude form of energy backscatter, to the DES model improved

results for channel flow.

If α = 1, this system (Equations 2.3, 2.4, 2.5) is very close to a classic k/ε model.

The proposed formulation assumes that the turbulent stress tensor is reconstructed

using the eddy viscosity hypothesis, Rij = 2
3
kδij − νT α(ui,j + uj,i). This of course is

the simplest reconstruction hypothesis to use. Nonlinear eddy viscosity and algebraic

Reynolds stress models use more complex (but still algebraic) reconstructions. Again,

the proposed ideas can easily be generalized to that context as well. The simplest

model possible is used in this work in order to focus as directly as possible on the

key idea - it is possible to develop turbulence models that automatically work at any

mesh resolution.

RST models based on equation 2.2 can, and do, backscatter energy. However,

any model based on a positive definite eddy viscosity (such as the classic k/ε model

or any two-equation model) is too simplified and can not backscatter energy. The

eddy viscosity is always positive and therefore always removes energy from the mean

flow and puts it into the modeled kinetic energy, k, where it is eventually dissipated

by ε to heat. This is the correct average behavior for a turbulence model, but not

necessarily locally correct (in space or time).

The additional parameter α has been added to the classic k/ε model to correct

this important flaw and control the energy flow. Usually α is positive (and order
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1), but it can become small or negative. When α < 0 the model is backscattering

energy. This parameter is not a model constant, instead it is a field that varies in

space and time, so that backscatter can happen in different regions at different times.

The transfer variable, α, also appears in Equation 2.4, the k-equation, so that the

total kinetic energy (modeled k plus resolved kr) is a conserved quantity and can only

disappear via dissipation to heat. Its presence is not necessary in the scale equation,

Equation 2.4.

When α < 0, the eddy viscosity in 2.4 is essentially negative. Negative viscosity is

anti-diffusive, it amplifies (rather than damps) existing resolved velocity fluctuations.

It amplifies small wavelength modes (those closest to the mesh resolution) the most

rapidly. This is a very reasonable model for backscatter. It is not injecting energy

via some random forcing of the resolved flow, rather it works to enhance the existing

instabilities and modes. Moreover, the energy transfer is local in spectral space. It

tends to take energy from the model (which has most of its energy at scales just below

the mesh resolution) and preferentially delivers it to the resolved flow at almost the

same length scale (but just above the mesh resolution).

The model for α the energy flow parameter, uses ideas from error estimation for

mesh adaptation. If the error in the computed solution is small, then the mesh is

deemed to be sufficient for first principles simulation and the model should go away

(the modeled kinetic energy should become very small). This is akin to the situation

described earlier, where a 1283 grid is initialized with a RANS solution and some small

resolved flow fluctuations. The model will detect this situation as very highly resolved

(lots of mesh resolution). Due to energy conservation inherent in Equations 2.3 and

2.4, the modeled kinetic energy can not just disappear. In order to become small the

modeled kinetic energy must be transferred somewhere - the only possibility is to the

resolved flow. Small estimated errors (in the resolved quantities) implies there should

be energy backscatter (the mesh can handle more fluctuations via direct simulation).

12
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At some point later in time, the resolved velocity on the 1283 mesh will be fully

energized. If the Reynolds number is high, then a 1283 mesh is still not sufficient to

perform DNS (a model is still necessary). In this case the error estimate will become

larger and larger until α becomes positive and a normal forward energy scatter down

the energy cascade will be imposed. The larger the error, the more energy is fed

to the modeled kinetic energy and the more the model influences the resolved flow

evolution. If the Reynolds number is low enough, than a 1283 mesh may actually

be sufficient resolution for DNS and the error estimate stays small. In this case the

model continues to backscatter until the model has almost no energy. At this point

the model has no affect on the resolved modes and DNS is achieved.

2.2.1 Energy Transfer Variable

The proposed equation for the energy transfer is,

α = 1.5(1.0− C∗(
k

k + kr

)2[(
∆xi√

kr

∂
√

kr

∂xi

)2 + 0.11]−1) (2.6)

where kr is the resolved turbulent kinetic energy (at a certain location and time),

k is the modeled kinetic energy, and C∗ = 0.28. The quantity (∆xi
∂
√

kr

∂xi
)2/kr =

((∆x∂
√

kr

∂x
)2 + (∆y ∂

√
kr

∂y
)2 + (∆z ∂

√
kr

∂z
)2)/kr is a dimensionless measure of the error

(similar to what is sometimes used in mesh adaptation). In this formulation the

resolved kinetic energy kr = 1
2
(u2

1 + u2
2 + u2

3) is the indicator function that is being

used to estimate the mesh resolution. If the flow is DNS or over-resolved (like a RANS

initial condition on an LES mesh) then this quantity is small, its inverse is large (but

limited away from infinity by the fairly arbitrary 0.11 term), and the model tends to

backscatter energy. In contrast, normal energy transfer (from resolved scales to the

modeled scales) occurs in the regions of the flow where the gradient length scales are

comparable to the mesh size. On very coarse meshes, RANS like behavior should be

recovered. In this limit, kr is expected to be very small, but note that (∆xi
∂
√

kr

∂xi
)2/kr
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will remain finite and independent of the magnitude of the resolved fluctuations. For

the simulations of isotropic turbulence performed, this term obtains an average value

of 0.8 in the RANS limit. This means that α → 1.5 − 0.42/(0.8 + 0.11) ≈ 1.04 and

the standard RANS model is very closely recovered in the RANS limit.

The particular form of the energy transfer function was developed and tuned

solely to obtain the correct limits. Many other functional expressions and/or indi-

cator quantities are certainly possible. The goal of this work is not to advocate for

this particular function but to demonstrate that self-adaptive turbulence models are

possible, and this particular function serves this purpose adequately.
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CHAPTER 3

SIMULATION RESULTS

The governing equations were solved using a Cartesian staggered mesh (Figure 3.1)

method [11] with exact projection [2] for the pressure solution. Isotropic decaying

turbulence was calculated using periodic boundary conditions on a box of size of

18π x 18π x 36π. The numerical method is second order accurate in space and time and

locally conserves mass and momentum. In addition, it locally conserves circulation

and kinetic energy in the absence of viscosity. The code is fully parallel (using MPI)

and optimized for execution on PC clusters.

Figure 3.1. Fully staggered arrangement of velocity (u,v) and pressure (p).
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3.1 High Re Isotropic Decay

In isotropic turbulence, the turbulent kinetic energy decays with time. This pro-

cess can be simulated with a simple RANS model using only one spatial grid cell, with

LES using many cells, or with DNS using enough cells to resolve the smallest length

scales of motion. Results from such a test are shown in Figure 3.2. The ordinate

shows total kinetic energy (k + kr) normalized by the initial total kinetic energy at

time t=0.0, the abscissa τ , is given by simulation time (seconds) non-dimensionalized

by the inverse time scale ( εt

kt
) at time t=0.0 (where t indicates total quantities). Nor-

malization of the abscissa can be interpreted as ’eddy’ turn over times.

The initial turbulent Reynolds number, ReT =
k2

t

νεt
, for this test case is 640,

comparable to the Comte-Bellot and Corrsin 1971 experiment [4]. The DNS result

(similar to [6]) was performed independently by de Bruyn Kops on a 768x768x1536

mesh using a Fourier spectral method and is given by the large circles. Many aspects

of the DNS (including spectra) have been closely compared with Comte-Bellot and

Corrsin and shown [5] to agree well. The mesh resolution is identical in each direction,

with the box size in the z-direction twice as large.

A number of different simulations were performed using mesh resolutions from

1x1x2 to 256x256x512. In each case the model is identical and only the mesh and

initial conditions are changed. The initial conditions for the full DNS were obtained by

running, for a long time with as little forcing of the large scales as possible, to maintain

the kinetic energy. The initial condition is therefore not random Fourier modes - but

Navier-Stokes turbulence. Each model initial condition was formed by averaging

the same initial 768x768x1536 velocity field to the appropriate mesh size using a

simple box average. The initial modeled kinetic energy at each mesh location was

then determined by comparing the exact 768x768x1536 velocity field to the smoother

coarse mesh field and calculating the sum of its difference. The dissipation was

calculated similarly, by using a box average of the exact DNS dissipation field.
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Figure 3.2. Total turbulent kinetic energy predictions of isotropic decay at initial
Re=640.

The simulations in Figure 3.2 show that at any mesh resolution, the model predicts

the decay of the turbulence well. The very lowest mesh resolution is clearly a RANS

(or URANS) simulation and the largest mesh, 256x256x512, is a QR-LES (nearly

DNS) simulation (with the mesh size roughly in the inertial range). The intermediate

resolutions might be considered URANS, VLES, or LES. The spectra for the initial

conditions are shown in Figure 3.3. These spectra represent VLES (32x32x64), LES

(64x64x128, 128x128x256), and QR-LES (256x256x512) simulations. The box average

of the initial data takes some energy from the lowest wavenumbers but most of the

energy from the highest wavenumbers. All energy that is not resolved is modeled by

the variable k.
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Figure 3.3. 1D energy spectrum of initial conditions for (Re=640) isotropic decaying
turbulence.

3.1.1 Turbulent Kinetic Energy Ratio

It might be expected that RANS equations should give RANS (essentially the

1x1x2) results irrespective of the mesh resolution used to solve those equations. This

is not the case, for two reasons. First the error will be different for different meshes

which will affect the backscatter term. More importantly, the equations are nonlinear,

and like the Navier-Stokes equations, have multiple possible solutions.

The ratio of the modeled kinetic energy to the total kinetic energy is shown in

Figure 3.4 with one curve for each of the mesh resolutions. The 1x1x2 solution is

the top curve, with all its energy contained in the model (giving a ratio of 1.0) and

the 256x256x512 simulation is the bottom line, with the smallest ratio of modeled

kinetic energy (< 10 percent). Note that these curves are relatively constant but

decrease slightly with time (as the simulation proceeds). Even though, the equation

system looks like a classic RANS model, it is not. The analysis of Germano [8] shows
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Figure 3.4. Ratio of modeled turbulent kinetic energy to total kinetic energy,
Re=640.

that this two-equation self-adaptive model is actually a ’universal’ turbulence model

applicable at any mesh resolution. There is no tendency for the solutions to move

toward the RANS solution (a ratio of 1.0).

The LES solutions stay entirely unsteady and three-dimensional. The slight de-

crease in this ratio over time is the correct behavior. It is due to the fact that over

time the Reynolds number of the flow is slowly decreasing and the mesh can, and

therefore does, resolve a larger percentage of the turbulent fluctuations. If the sim-

ulation was run long enough, then the Reynolds number would drop sufficiently for

the 256x256x512 mesh to perform DNS, and at this point the ratio should be essen-

tially zero. The small variation at the beginning of each simulation shows the initial

condition is close to the correct ratio supportable by that mesh, but not perfect. The

long time behavior of this ratio is shown in Figure 3.5.
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Figure 3.5. Ratio of modeled turbulent kinetic energy to total kinetic energy for
extended time, Re=640.

At these very long times, the turbulence scales grow large enough to feel the

influence of the box size and the decay rate no longer follows the classical theory for

homogeneous decay in an infinite domain. For this reason the total kinetic energy

at these long times is not of interest. However, the long time behavior of the model

ratio is still of interest. Figure 3.5 shows that the coarse mesh (4x4x8) appears to

be approaching the ’RANS’ solution (a ratio of 1.0) at very long times. The 8x8x16

simulation initially tries to approach the RANS solution, however this ratio eventually

starts to decrease. The finer meshes (16x16x32 - 128x128x256) have enough resolution

to compute a solution that does not return to the RANS limit. It is hypothesized that

steady (RANS-like) solutions occur when the resolution is not sufficient to maintain an

energy cascade. For this test case, the initial large eddy lengthscale of the turbulence

(L = k3/2/ε) is 6.0, and the 8x8x16 simulation has a mesh size close to 7.0. Nikitin et

al. [15] has noted that a similar affect occurs in very under-resolved DES simulations.
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3.1.2 Perturbation of Initial Conditions

A truly adaptive model should be able to obtain the correct behavior from in-

correct initial conditions. For example, it is of considerable interest to see if a

64x64x128 mesh initialized with a RANS solution can, over time, develop into a

full LES simulation. In order to test the model in this way, the initial condi-

tions were either smoothed or sharpened using a filtering operation. The filter

used to alter the initial conditions was a nearest neighbor averaging procedure,

ufiltered
ijk = βuijk + (1 − β)(ui+1jk + ui−1jk + uij+1k + uij−1k + uijk+1 + uijk−1)

1
6
. For

smoothing, β = 0 was used. This replaces the value at a mesh point by the average

of its nearest neighbors. This type of filter removes energy primarily from the highly

oscillatory modes with wavelengths close to the mesh size. In spectral terms it damps

the spectra in the region just above the cutoff wave number. The effect is shown

in Figure 3.6, which shows the original initial spectra for the 64x64x128 simulation

(normal, smooth, sharpened) as the top three curves. For now the reader is referred

to only the top three curves as the bottom curves (almost on top of each other) will

be discussed in more detail shortly.

Sharpening the velocity field is performed by using β = 1.5. This adds energy

to the existing high frequency modes. Figure 3.7 shows the affect of smoothing

and sharpening the initial conditions on the kinetic energy ratio. When smoothing

is used, energy is removed from the resolved modes. In order to keep the total

kinetic energy the same, the model now must start with more energy. The ratio

therefore starts higher than before. As time proceeds the model achieves the same

ratio irrespective of the initial conditions. At early times, the smoothed solution has

less error and therefore backscatters somewhat more than the unperturbed initial

condition. This removes energy from the model and makes the ratio decrease faster,

so that it approaches its original state. A similar (but opposite) process happens

when the spectra is sharpened. In this case, the model senses that the mesh can
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Figure 3.6. 1D energy spectra for 64x64x128 case, Re=640 (Sharp, Normal,
Smooth).

Figure 3.7. Ratio of modeled turbulent kinetic energy to total kinetic energy,
Re=640, for perturbed initial conditions.
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not support the input resolved fluctuations, and quickly sends that energy to the

model. Note that the rate at which the model adjusts to perturbed initial conditions

depends on the mesh resolution. The higher mesh resolutions adjust more rapidly. It

is hypothesized that the time it takes to transfer the energy scales on the timescale

of the turbulence at the cutoff (transfer) lengthscale (k/ε).

It could be theorized that Figure 3.7 does not necessarily imply that the model

has corrected itself. Although the ratio of ( k
k+kr

) indeed shows the correct behavior,

a more definitive test would be to see if the energy spectra for all three cases (sharp,

normal, smooth) are the same. These spectra are shown in Figure 3.6. As mentioned,

the top three curves shows the initial energy spectra at (t=0.0s) and the bottom three

curves correspond to the spectra at some later time (t=0.4s) where equilibrium is

obtained. These spectra (almost right on top of each other) along with the turbulent

energy ratio clearly show that the model is self-adapting and does indeed correct itself

for perturbed initial conditions.

3.1.3 Alpha Histogram

It had been stated earlier that the energy transfer function (α) was usually positive

and order one. In order to visualize exactly what happens during a simulation with

correct initial conditions and with perturbed initial conditions (sharp and smooth)

Figure 3.8 shows a histogram of α (positive values) and Figure 3.9 shows a histogram

of α (negative values).

Figure 3.8 shows that with the correct initial conditions (solid line) α obtains

an average value of around 0.87 for this mesh resolution of 64x64x128. Figure 3.9

is an enlarged view of the negative α values from negative one to zero. The his-

tograms also include values of α for the smooth (squares) and sharpened (diamonds)

initial conditions whose spectra were shown in Figure 3.6. As mentioned previously,

smoothing the velocity field removes energy from the resolved flow and places too
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Figure 3.8. Histogram of energy transfer function (α) positive values.

Figure 3.9. Histogram of energy transfer function (α) negative values.
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much energy into the model. To compensate for this error Figure 3.8 shows that α

takes on a smaller average value and Figure 3.9 shows a drastic increase in negative

values (more backscatter). By having more negative values α is correctly displacing

energy from the model to the resolved field to correct for the wrong initial condition.

The opposite effect is shown for the sharpened case. The simulation has been

started incorrectly with too much energy in the resolved field. Here it is seen that α

obtains a slightly larger value than 0.87 in Figure 3.8 to ensure more normal forward

transfer of energy. Because of this shift to the right, there is considerably less (almost

non-existent) negative values observed in Figure 3.9. This guarantees almost no

backscatter and has an increase in forward scatter to correct the initial conditions.

3.2 Low Re Isotropic Decay

In order to verify that the model works in the DNS regime, a lower Reynolds num-

ber simulation was performed which is well resolved (DNS) at the largest simulation

of 256x256x512. The initial condition for this lower Reynolds number case was gen-

erated by running the high Re simulation with a larger viscosity (ν = 0.3743 cm2/s)

and with a very small amount of modeled kinetic energy (k = 10−3 cm2/s2). Using

the higher viscosity reduces the Reynolds number and also quickly damps the smallest

scales of the turbulence.

The turbulent time scale (kt/εt), is plotted versus simulation time (solid line) in

Figure 3.10 for the low Re case. As was expected, at early times, the small scales

are adjusting to the low Re (solid line). This is due to the simulation reacting to

the increased viscosity and reduced modeled kinetic energy. Eventually, a power

law decay for the kinetic energy is obtained, and the simulation is considered fully

adjusted. A power law decay should appear as a straight line in Figure 3.10. A linear

curve fit is given by the plus symbols. The inverse of the slope given by the curve

fit is the kinetic energy decay exponent, n ≈ 1.38. The simulation was considered
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Figure 3.10. Turbulent time scale (kt/εt) vs. simulation time for a 256x256x512 sim-
ulation with increased viscosity and small amount of modeled kinetic energy (DNS).

to be well developed at a time of 0.14s. This field (at t=0.14s) was used in all the

subsequent simulations, as the well developed low Reynolds number (Re=211) initial

condition. The same box averaging procedure for the high Re number was also used

to create initial conditions for the smaller meshes in the low Re number case.

Figure 3.11 shows the total kinetic energy predictions for the low Re test case.

The circles represent the essentially DNS simulation (though the model is on), the

lines represent the various simulations from 1x1x2 through 128x128x256. These are

in fairly good agreement with the DNS data, as was observed for the high Reynolds

number case. The slight discrepancy at long times is most likely due to errors in the

RANS model at lower Re.

The ratio of modeled kinetic energy is plotted in Figure 3.12 The full RANS

simulation (1x1x2) is at the top of the figure (ratio of 1.0) and the DNS is shown at

the bottom of the figure with a ratio of roughly 10−3. Once again it is observed that
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Figure 3.11. Total kinetic energy predictions of isotropic decay at initial Re=211.

Figure 3.12. Ratio of modeled kinetic energy to total kinetic energy, Re=211.
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there is no tendency for these solutions to move toward the RANS solution (ratio

of 1.0). The LES solutions stay entirely unsteady and three-dimensional, and the

correct decrease in this ratio over time is shown.

3.3 Scaling

In classic LES models the lengthscale is assumed to be proportional to the mesh

size, ∆x, and the gradients scale like ui,j ≈ ε
1
3 ∆− 2

3 . The eddy viscosity is then

constructed from this scaling and has the form, νT ≈ ui,j∆
2 ≈ ε

1
3 ∆

4
3 . The use of

the mesh size to infer the lengthscale is why classic LES fails outside of the inertial

range (close to the DNS or RANS regimes), and one reason why the self-adaptive

model (which predicts the lengthscale and does not infer it) can operate at any mesh

size. However, the current model should still obtain the classical LES behavior in its

range of applicability. The lengthscale predicted by the model (Lm = k3/2/ε) should

be proportional to the mesh size, when the model is operating in the LES regime.

Figure 3.13 looks at predicted lengthscale (in log scale) at a fixed time t=0.5 for the

various meshes. At small values of ∆x (large number of mesh points) it is obvious that

the lengthscale is indeed a function of grid spacing as would be expected with classic

LES. A reference line has been added (dotted line) with a slope of 1.0 for comparison.

If a well defined -5/3 slope were to be observed in the energy spectra, one would

assume that classic LES would closely match the reference line in that -5/3 region.

Because the spectrum shown (Figures 3.3 and 3.6) show only a weakly observable

-5/3 slope, it is not surprising that the lengthscale shown in Figure 3.13 does not

match the reference line exactly. One would expect viscous effects (the influence of

a viscous lengthscale) to reduce the scaling below linear and this is indeed observed.

The figure clearly shows how the turbulent lengthscale is not related to the mesh

spacing outside the LES regime.
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Figure 3.13. Lengthscale behavior at time = 0.5s.

Mesh resolutions smaller than 64x64x128 do not exhibit the linear behavior be-

cause now the relevant turbulent lengthscale is no longer related to the mesh size.

There is a transition region that one might call VLES(32x32x64), but not full LES.

The 8x8x16 mesh might be considered the start of URANS (as shown in Figure 3.4),

where the largest scales can just be resolved, and unsteady 3D solutions maintained.

These smallest mesh sizes are where the solutions can not sustain a cascade because

all the largest turbulence has scales that are smaller than the mesh size. Interestingly,

Carati et. al. [1] conducted LES simulations for isotropic decaying turbulence and

determined that the smallest mesh size possible for a classic (dynamic model) LES

simulation was 483. This is in very good agreement with Figure 3.13, and is just

where the elbow in the curve occurs.
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CHAPTER 4

PARALLEL PROGRAMMING

Even with current technological advances in computer hardware, large simula-

tions can require an extraordinary amount of computer resources. Performing a

256x256x512 simulation for these test cases requires the computer to solve approx-

imately 34 million grid points. Solving this mesh size takes (approx) 2.5 hours per

time step with 1 CPU. To compute a solution (ignoring memory limitations for the

moment) would take roughly 20 weeks to get data for this large mesh size! It is obvi-

ous that a standard PC will not be able to handle the computational requirements for

this case anytime soon. In order to decrease simulation time and lower the memory

requirements, the code was parallelized. This was accomplished by utilizing the Mes-

saging Passing Interface (MPI) library. MPI is a library of functions for Fortran and

C/C++ that distributes information from a single processor to multiple processors.

Using more processors allows the larger simulations in this work to be accomplished.

4.1 Boundary Conditions

While MPI facilitates the transfer of data between processors, care must be taken

to ensure the correct data is passed between neighboring processors. All simulations

performed in this work use periodic boundary conditions as shown on the left side of

Figure 4.1.

This figure (left side) shows how data is stored and distributed for periodic bound-

ary conditions on a single processor. All of the interior points are within a domain of

Lx and Ly (shaded area) and stored on a single processor. The ghost cells are used for
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Figure 4.1. Single processor (left side) and MPI (right side) partitioning of the
problem.

the periodic boundary conditions and are given by the values of the interior points at

each face in this rectangle. Here, Nemo the fish is seen swimming out of the left side

of the domain. Because of periodicity, he is wrapped around to the opposite face he

just left, and is seen swimming into the domain from the right hand side. Similarly,

if he swims out of any other face, he will wrap around to the opposite face he just

left. This ensures that Nemo continues swimming inside the periodic domain.

Suppose that the same data set is desired to be split in half, then each processor

should get half of the interior points as shown (right side of Figure 4.1). Here the

x-direction, with an initial domain of (Lx) has been split in half (Lx/2) for two

processors. It is now apparent that care must be taken when determining the correct

transfer of data between these two processors. The only way to correctly determine

this information is by allowing every processor to locate its neighbor for each of

the (cubic) domain’s six faces. From Figure 4.1 for the partial domain, interior

information must be shared with neighboring processors (given by the smiley face).

However, at domain edges, the boundary information should wrap around to the
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opposing face, (given by Nemo). An algorithm was developed to do exactly this and

is explained in detail in the next section.

4.1.1 Neighboring CPU Data

The algorithm used to compute neighboring CPU information is shown in Ap-

pendix B. Figure 4.2 shows a parallel simulation consisting of eight processors. The

left side of Figure 4.2 shows the data partitioned together, the right side shows the

front and back plane separated for clarity with each of the 8 processors numbered

from 0-7. Since each cube of data has six sides it is clear that there will be six

neighboring CPU locations calculated for each processor. This algorithm uses simple

integer division to allow each processor to use the correct data.

Figure 4.2. Neighboring CPU location.

By visual inspection the processor to the right of 0 is processor 1. There is no

processor to the left of 0, however periodicity tells us that the information should

wrap around from processor 1. The processor above 0 is processor 2, and below is
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also 2 (from periodicity). Finally, the processor in front of 0 is 4 (periodicity) and

the processor behind 0 is also processor 4.

This simple reasoning is exactly what the algorithm computes in Appendix B.

For the processor in question, the MPI assigned integer ’myid’ is 0. Because there

are two processors in every direction, NXP = NY P = NZP = 2. The values

of ix, iy, and iz are calculated as 1. The CPU to the right of processor 0 will be

calculated as (CPUinfo1 = 1), the CPU to the left (CPUinfo2 = 1), the CPU at the

top and bottom are given by (CPUinfo3 = 2, CPUinfo4 = 2) respectively. Finally,

the CPU located at the back and front of the CPU in question are (CPUinfo5 =

4, CPUinfo6 = 4) respectively. Simple integer division based on the variable ’myid’

computes neighboring processor locations. The ’If’ statements shown in Appendix

B are used whenever a processor is on the edge of a domain (such as computing the

processor to the left of 0). If any of these processors are on this domain edge, it is

computed that boundary information will wrap around to ensure periodicity. It is

clear from the above figure that the algorithm has correctly determined the location

of the neighboring CPUs relative to processor 0.

It is urged that the extremely interested reader verify that this algorithm (Ap-

pendix B) correctly determines all eight CPU locations.

4.1.2 Transfer of Boundary Condition Information

With this background, the actual passing of the boundary information is now

explained in detail. The cell indexing convention is shown in Figure 4.3. This shows

that the interior points are given by the data values from 1-NX and 1-NY, where

NX is the number of points in the x-direction and NY is the number of points in

the y-direction. The ghost cells (dashed lines) used for the boundary conditions are

placed at index locations around the interior values. The location of cell 1 (0,0), cell

2 (NX+1,0), cell 3 (NX+1,NY+1), and cell 4 (0,NY+1) are the four corners for this
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2d example. The correct procedure must be followed in order for these four corner

cells to contain the correct data. The z-direction (out of the page) follows the same

logic, but for clarity is not shown.

Figure 4.3. Cell indexing convention.

In order to enforce periodic boundary conditions on this cell, there are four update

steps for this 2d example. These update steps are shown in Figure 4.4. Step one

updates the ghost cells with values from the right side interiors (NX,1-NY) as shown.

Because interior values are used, these are correct. The second step takes the top

interior values (1-NX,NY) along with ghost cell values at (0,NY) and (NX+1,NY).

When transferred to the bottom ghost cell plane, cell 2 now has incorrect information

as shown. To correct this cell, the third step is performed. This step takes the left

interior values (1,1-NY) along with ghost cell values at (1,0) and (1,NY+1), and

transfers these to the ghost cells on the right side. When step three has completed,

the incorrect cell 2 value has been replaced with a correct value, but now cell 3

contains bad information as shown. Finally, the fourth step takes the bottom plane

(0-NX+1,1) and transfers these corrected values to the top ghost cells at NY+1. Now

cell 3 has been replaced with correct data and all ghost cell information is correct.

This exact procedure must be followed in this precise order to ensure that all ghost
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Figure 4.4. Ghost cell update procedure.

cells (especially the corners) are indeed updated with the correct information. For

three dimensions (z-direction) would also have two additional update steps (after x

and y), following the same logic.

The Fortran code used for the the procedure in Figure 4.4 is given in Appendix

C. For brevity only the x-direction will be explained in great detail, it is clear how

to apply the same information to the y and z directions. The values of NX, NY,

NZ are given by the number of interior points in the domain for each direction. The

variable (xx) is a 3D array of data with correct interior domain information, but with

incorrect boundary information stored at the ghost cells. The routines Send BCX

and Recv BCX, are given in Appendix C. These are the procedures that update the

ghost cell information.

35



www.manaraa.com

Subroutine pPeriodic_BC(xx)

Call Send_BCX(NX,NY,NZ,xx) !Send B/C info for x dir
Call Recv_BCX(NX,NY,NZ,xx) !Recv B/C info for x dir

Call Send_BCY(NX,NY,NZ,xx) !Send B/C info for y dir
Call Recv_BCY(NX,NY,NZ,xx) !Recv B/C info for y dir

Call Send_BCZ(NX,NY,NZ,xx) !Send B/C info for z dir
Call Recv_BCZ(NX,NY,NZ,xx) !Recv B/C info for z dir

End Subroutine pPeriodic_BC

The routine above performs ghost cell updates 1 and 2 with Send/Recv BCX.

Ghost cell updates 3 and 4 are performed with Send/Recv BCY. The send operation

in Send BCX uses the MPI function call MPI ISEND and MPI IRECV (commonly

used MPI functions are shown in Appendix D). There are two basic ways to transfer

information with MPI, these are blocking and non-blocking operations. A blocking

operation (such as MPI SEND) will perform the function call requested and also halts

all processors from continuing any further until the requested process is completed.

A non-blocking operation (such as a MPI ISEND) will send the required data to all

processors, but will not halt any processors from doing useful work while the send

operation is in progress. This (will be shown shortly) can affect the overall perfor-

mance of the code and care should be taken to decide which operation to perform.

It was decided that the boundary conditions will use non-blocking send/receives and

use MPI WAITALL to guarantee this data is received in the appropriate order of

Figure 4.4. The MPI WAITALL command (Appendix D) allows the programmer to

decide when a manual block should be placed in the code. The structure of the pPe-

riodic BC routine uses MPI ISEND and MPI IRECV to send and receive the correct

ghost cell boundary information. Because these are non-blocking, all of this data is
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sent at once to all processors. The routine Recv BCX is just a MPI WAITALL that

will not let any processor continue until all of the send/receives for the x-direction

are finished. Because non-blocking operations are performed, if the WAITALL incurs

any performance penalty at all, it will be much less than performing a blocking send

and a blocking receive. This same methodology is applied to the y and z directions.

This strictly guarantees that the x-direction information is sent and received first,

y-direction follows second, and the z direction is last.

The reader is now referred to the Send BCX subroutine in Appendix C. The

variables sent into this routine are the NX,NY,NZ, and the 3D array that is to be

updated with periodic boundary conditions. A send buffer is created, (sbuffx r) that

contains the values of the y-z plane at fixed interior x-location (beginning (1) or

ending (NX)). To take out any ambiguity, the send buffer (x-direction) left plane

and send buffer (x-direction) right plane are clearly shown in Figure 4.5, along with

orientation axis.

Figure 4.5. Orientation and planar data values used by periodic boundary condi-
tions.
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As is shown in Recv BCX routine these x-direction planar values are now (once the

operation is complete) used to update the ghost cell information for the input array

that is desired to be periodic. For clarity these values are given by the receive buffer

(x-direction) right side (rbuffx r) and receive buffer (x-direction) left side (rbuffx l).

With the process explained in detail, it should be apparent that the y and z directions

follow the exact same procedure outlined above, with only slight changes in orientation

and by the naming convention of the send and receive buffers. For example the send

buffer (y-direction) top x-z planar data is stored as sbuffy t, and the sent bottom

planar data is stored as sbuffy b, etc.

4.2 MPI I/O

It may be asked, how is it guaranteed that the CPU order shown in Figure 4.2 is

exactly followed? This question is answered by how the initial fields are read into the

program with the input routine shown.

NXP = DNX/NX ! # processors in x-dir
NYP = DNY/NY ! # processors in y-dir
NZP = DNZ/NZ ! # processors in z-dir

! CPU location indices
kl = myid/(NXP*NYP) + 1
kr = mod(myid,NYP*NXP)
jl = kr/NXP + 1
il = mod(kr,NXP) + 1

! read in the total field and store in a temporary array
! called uJ.
open (unit=503,file=trim(str4),form=’formatted’)
read(503,*) (((uJ(i,j,k),i=0,DNX+1),j=0,DNY+1),k=0,DNZ+1)

!! now, let every processor get it’s own "chunk" of data.
tke(0:NX+1, 0:NY+1, 0:NZ+1) =
uJ( NX*(il-1):(il*NX)+1 , NY*(jl-1):(jl*NY)+1, NZ*(kl-1):(kl*NZ)+1 )
close(unit=503) !close the large field uJ.
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The input routine is shown for the kinetic energy (tke). All other data fields (u,

v, w, eps) are read in exactly the same way. In Fortran the expression mod(n,m)

gives the remainder when n is divided by m; it is applied to integers. Examples

are mod(8,3) = 2, mod(27,4) = 3, mod(11,2) = 1, mod(20,5) = 0. The number of

processors in each direction are determined by dividing the total domain size (DNX,

DNY, DNZ) into smaller problem sizes (NX, NY, NZ). Then integer division and

the mod(n,m) expression are used to compute three integer variables (il, jl, kl). The

problem size plus boundaries is then defined for every processor and the code uses

(il, jl, kl) to correctly grab a ’chunk’ of data from the total domain. Finally the large

(total) array uJ is closed.

Refer to the domain decomposition show in Figure 4.6, where a domain is split

in half (x-direction). Assume (for this example) that we wish to run a 64x64x128

simulation on two processors as shown. The total domain is given as (DNX=64,

DNY=64, DNZ=128), the problem size for each processor would be (NX=32, NY=64,

NZ=128).

MPI will randomly assign the variable ’myid’ to each processor it uses. In this

case, two processors would be available with ’myid=0’ and ’myid=1’. To ensure

that the correct processor is located exactly as shown in Figure 4.6, consider the

input routine described above. This routine, reads in the total energy array (with

boundaries) and stores this in a temporary array (uJ(0:65,0:65,0:129)) on each CPU.

The processor with ’myid = 0’, computes (il=1, jl=1, kl=1). This stores its ’chunk’

of kinetic energy (tke) with information from the total domain uJ(0:33, 0:65, 0:129),

exactly as shown in Figure 4.6. Likewise, the processor ’myid = 1’, computes (il=2,

jl=1, kl=1), which stores it’s (tke) from the values uJ(32:65, 0:65, 0:129). Finally,

now that the large temporary array (uJ) has been partitioned correctly, it is closed.

It is clear from this example, that these are indeed the correct indices for the input

arrays. This guarantees that the input data will indeed follow the numbering sequence
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Figure 4.6. Single processor (left side) and MPI (right side) partitioning of the
64x64x128 example problem.

shown in Figure 4.2, with the appropriate interior domain and boundary (ghost cell)

information.

4.2.1 Data Output

The output routine (Appendix F) follows exactly the same logic as the input

routine, except in reverse order. Although this routine is shown for kinetic energy

(tke), the other fields (u, v, w, eps) follow the same procedure. Typically a root

processor is chosen, usually ’myid=0’, is selected. This root processor will be the

processor that collects all data from other CPUs using a (MPI RECV) and pieces

together the total domain by using the values of il, jl ,kl. A simple ’If’ statement

allows all other processors (not root) to send (MPI Send) their data along with the

corresponding values (myid, il, jl, kl). Once the root processor has received all of the

data from each processor and pieced together the total domain, it then writes out
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data for post-processing use. The output routine shown does just this, and is clearly

explained in Appendix F by the programmer comments.

4.3 Global Calculations

Now that the most difficult part of parallelization has been explained (boundary

conditions), there is just one more consideration to take care of before any optimiza-

tion can begin. This last part deals with global variables used in the calculations of

the code. Namely, these are the SUM, MINVAL, and MAXVAL Fortran calls. With

the total domain now decomposed and sent to ’N’ number of processors there must

be a way to figure out the total SUM of data values globally (not just on each pro-

cessor). Similarly the MINVAL/MAXVAL functions must give values for the total

domain and not for each processor. In order to accomplish this, three extra routines

were used in conjunction with the MPI ALLREDUCE function (Appendix D). These

three routines are shown in Appendix E. It should be straightforward to see that the

ALLREDUCE function simply combines the values from all processors to calculate a

desired global value. This global value is then distributed to all processors. For ex-

ample, if an array is given by (1.0 2.0 3.0 4.0), and each value is sent to a parallel job

with four processors, each processor stores the entries 1.0 - 4.0. If a Fortran SUM is

performed, processor 1 calculates the total sum of the given array as 1.0, processor 2

calculates the total sum to be 2.0, etc. However with MPI ALLREDUCE, the actual

global sum of (1.0 + 2.0 + 3.0 + 4.0 = 10.0) is calculated and this global value is then

sent to every processor.

4.4 Parallel Optimization

With all the pieces mentioned above in place, the code was fully parallelized.

Extensive testing and debugging proved that the parallel version of the code gives

(almost to machine precision) the same solution as the serial version. The next and
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last step was to optimize the code in order to fully take advantage of using multiple

processors. Optimization in parallel consists of efficiently sending, receiving, and

computing data.

Start_MPI

!Non-Optimized
Compute Sqrt(Data B) !computes square root of Data
MPI_SEND(Data A) !(blocking) send to all processors (takes a while)
!processors sit idle at this point until the send is completed.
Answer = (Data A and Sqrt(Data B))

!Optimized
MPI_ISEND(Data A) !non-blocking send to all processors (takes a while)
Compute Sqrt(Data B) !with send in progress, computer continues to work
!once the Sqrt is calculated, the send has most likely been completed
MPI_WAITALL !manual stopping point to make sure Data A was sent
Answer = (Data A and Sqrt(Data B))

End_MPI

A simple example is shown, where a non-optimized and an optimized solution are

computed with two arrays (Data A, Data B). The non-optimized code computes the

square root of (Data B) and then sends (Data A) to all processors. At this point,

the answer cannot be computed until this sending operation has been completed.

Recall that MPI SEND is a blocking function call, and will halt all processors until

the sending operation is completed. If (Data A) is very large, this send operation can

take a long time, and at this point all processors sit idle and wait. When the send

is completed the solution (Answer) is calculated. Obviously this will yield a correct

answer, but it is not the best use of available resources because now an additional

penalty is incurred by the communication time between processors. The optimized

code however, will yield the correct answer, and will do so faster! This is because

the MPI ISEND is performed (as shown). Recall that MPI ISEND is a non-blocking

operation. While this information is being sent, there is no reason why the proces-
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sors cannot continue to do some useful work. As (Data A) is sent (optimized code),

all processors begin computing the square root of (Data B). When the square root

has been calculated, most (or ideally all) of (Data A) has been sent. If all of (Data

A) was sent during the computation on (Data B), the WAITALL function incurs no

communication penalty. Even if all of (Data A) was not sent, the WAITALL still

takes less time than the blocking send performed by the non-optimized code. The

final answer will be computed much faster. This hides the MPI communication times

behind actual computational work in order to develop an ideally optimized code. By

letting each processor do as much work as possible during these MPI communication

function calls, better parallel performance is obviously obtained. This idea was men-

tioned above and shown to be effective for the periodic boundary condition routine

shown in Section 4.1.2.

Figure 4.7. Total simulation time (hrs) for 64x64x128 and 128x128x256 before and
after optimization on the UMass cluster.
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Figure 4.7 shows the total simulation time for a 128x128x256 and a 64x64x128

simulation before and after MPI optimization. This figure shows that once paral-

lelized, the total simulation time for a 128x128x256 simulation was 5.2 hours and

0.71 hours for the 64x64x128 case, using eight processors. After the code was opti-

mized by hiding as much of the communication time as possible, the total simulation

time for both cases (again with 8 processors) dropped by roughly 20 percent. This

reduction with the optimized code saves valuable supercomputing time.

4.5 MPI Performance

Figure 4.8 shows the parallel performance of the developed code as recorded on

the Arctic Region Supercomputing center IBM/P690 nicknamed ’Iceberg’ (symbols

with dashed lines), and on the UMass cluster ’von Karman’ (symbols with dotted

lines). The speed-up factor is given by the total simulation time on a single processor

divided by the simulation time for multiple processors.

Figure 4.8. Speed-up factor vs. number of processors (UMass and ARSC).
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It is not necessarily a measure of how fast a given CPU is, but rather, a measure

of the relative communication time between processors for any given architecture.

The ideal performance is also shown (solid line) and shows a linear relationship. For

example, using twice as many processors, should give (ideally) a speed-up factor of

two, etc.

Because von Karman has a slower interconnect than the DoD computer, it is not

surprising to see that bottom three curves correspond to speed-up values for this

machine. It is shown that using multiple processors (1 per node) increase the speed-

up factor and therefore decrease computational time to a solution. It is even a bit

surprising that for the 128x128x256 mesh resolution the speed-up factor is almost

the same as what was observed on Iceberg. It was noted during the testing of MPI

performance that von Karman gives poor results when both processors on a node are

used. This is because there is only one bus per node. If both CPUs are utilized, the

memory access is at 1/2 the speed over this shared bus. Because of this, all MPI

simulations run on von Karman use only one processor per node to achieve the best

performance as shown.

It is clear from Figure 4.8 increasing the number of processors on Iceberg imme-

diately results in a faster simulation time. This is shown by (dashed lines - symbols)

the close behavior of the simulations on Iceberg to the ideal speed-up. At 32x32x64

Iceberg gives a speed-up of 7.3 compared to 4.5 for von Karman with 8 processors.

The 64x64x128 on Iceberg yields 8.5 compared to 6.0 for von Karman again with 8

processors. Lastly, the 128x128x256 mesh has a speed-up that is almost the same for

both machines giving a 6.5 out of 8.0 speed-up factor. It should be mentioned that

the increased speed-up factor for the 64x64x128 simulation on Iceberg has nothing

to do with MPI or optimization. This has to do with the particular architecture the

code is running on. In this case, Iceberg appears to handle the 64x64x128 extremely

well (fits well into cache) and gives a better than ideal speed-up factor. With the
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available information on parallel performance, all of the large simulations 32x32x64 -

256x256x512 were performed with multiple processors at ARSC.
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CHAPTER 5

REYNOLDS STRESS TRANSPORT MODEL

The turbulence modeling approach presented thus far is applicable to any RANS

transport equation system. Since the well known two-equation model has been pre-

sented and shown to work well, a more complex equation system was investigated.

Reynolds stress transport (RST) models are the next step in complexity for turbulence

modeling. Additional physics are contained in the six equations used to represent the

evolution of the Reynolds stresses (Rij) that are not in two-equation models. In par-

ticular, backscatter happens naturally in a Reynolds stress model and therefore no

explicit function for backscatter is needed.

5.1 RST Model Overview

The general form of the Reynolds stress transport equation is shown below.

DRij

Dt
= Pij︸︷︷︸

exact

+ Dv
ij︸︷︷︸

exact

+ Dij︸︷︷︸
modeled

− εij︸︷︷︸
modeled

+ Πij︸︷︷︸
modeled

+ Ωij︸︷︷︸
exact

This equation states that: the material derivative of Rij equals the rate of production

(Pij), plus transport by diffusion (Dv
ij + Dij), minus the rate of dissipation (εij), plus

redistribution due to turbulent pressure-strain interaction (Πij), plus redistribution

due to rotation (Ωij). The known quantities are labeled ’exact’ and the unknown

quantities require models to solve this system. Major advantages with this approach

are that the production term (usually a dominant term) is now exact, along with any

rotational effects. Because transport equations are solved for the evolution of Rij,
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the eddy viscosity hypothesis is not needed and thus any deficiencies with the eddy

viscosity model are avoided. RST models also have a mechanism for the backscatter

of energy unlike the classic k/ε model, therefore no ad-hoc function such as α, is

required. Finally, since most of the computational expense for this finite volume code

is spent on solving a Poisson equation for pressure, additional transport equations

may well prove to be worth the minimal increase in computational requirements.

5.2 Mathematical Review

As mentioned in Chapter 2, Germano [8] revealed that the exact, but unclosed

governing equations for RANS and LES (and URANS, VLES and DNS) are mathe-

matically identical. From the assumptions mentioned in Chapter 2, the equations for

turbulence evolution are (from Appendix A) shown once again.

∂ui

∂t
+

∂

∂xj

(ui uj) = − ∂p

∂xi

+ ν
∂2ui

∂x2
j

− ∂Rij

∂xj

(5.1)

Where ui and p are the computed velocity and pressure and Rij = uiuj − ui uj is the

unknown turbulent stress tensor. The exact (but unclosed) evolution equation for

this stress tensor is,

∂Rij

∂t
+ uk

∂Rij

∂xk

= ν
∂2Rij

∂x2
k

− (Rjk
∂ui

∂xk

+ Rik
∂uj

∂xk

)− ∂

∂xk

Tijk

−(<
∂p

∂xi

, uj > + <
∂p

∂xj

, ui >)− 2ν <
∂ui

∂xk

,
∂uj

∂xk

> (5.2)

where the bracket operation is given by < ai , bj >≡ aibj − ai bj and the turbulent

transport is defined by Tijk ≡ uiujuk−ūiRjk−ūjRik−ūkRij−ūiūjūk. The turbulent

transport and bracketed terms require a model if the system is to be solved. To

accurately model some of the terms in 5.1 and 5.2, a third ’scale’ equation is often

postulated that captures the turbulent energetic length or timescale. The epsilon
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equation [12] will be used once again. The reader is to keep in mind that other forms

such as omega (inverse timescale) [26] and lengthscale equations [22, 16] also are

possible. In order to implement a Reynolds stress transport model, a modeled form

of equation 5.2 is needed and is given in Appendix G.

5.2.1 Second Moment Closure Self-Adapting LES Model

The self-adapting LES model will use the following transport equations,

∂ui

∂t
+

∂

∂xj

(ui uj) = − ∂p

∂xi

+ ν
∂2ui

∂xj∂xj

− ∂Rij

∂xj

(5.3)

∂Rmn

∂t
+

∂(ujRmn)

∂xj

=
∂

∂xj

[
(ν + νT )

∂Rmn

∂xj

]
+ Pmn − P Rmn

+ CS
p2(SmjRjn + SnjRjm + P Rmn)

+ CW
p2 (WmjRjn + WnjRjm)

+ Cp1(Ti)(
2

3
δmn −Rmn)

+ C∗
p2Smn + 2νT

(
1

k

∂k

∂xj

∂Rmn

∂xj

)
(5.4)

∂k

∂t
+

∂

∂xj

(kuj) =
∂

∂xj

[(ν +
νT

σk

)
∂k

∂xj

] + P − ε (5.5)

∂ε

∂t
+

∂

∂xj

(εuj) =
∂

∂xj

[(ν +
νT

σε

)
∂ε

∂xj

] +
ε

k
Cε1P − ε̂

k
Cε2ε (5.6)

where the overbar on the velocity and pressure have been dropped for convenience.

Equation 5.4 is the closed form of the normalized Reynolds stress tensor Rij = Rij/k.

The derivation of this transport equation is provided in Appendix G. Equations 5.5

and 5.6 are provided for closure of 5.4 and will be explained shortly.

Equation 5.4 shows the time derivative and convective term of the Reynolds stress

tensor Rmn on the left hand side. The first term on the right hand side shows vis-

cous and turbulent diffusion together. The viscous diffusion is given exactly and the
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turbulent diffusion has been modeled with an eddy viscosity (νT ) term from the well

known gradient-diffusion model. The eddy viscosity is given as νT = Cµ F k
Ti

( k
k+kr

) with

Cµ = 0.28.

The next two terms (Pmn − P Rmn) are the exact production terms given from

Appendix G. As mentioned previously, this term is typically a very large and dominant

term that no longer requires a model. The RST production term is given by P ij =

−
(
Rik uj,k + Rjk ui,k

)
. In addition P = 1

2
P ii and P = Pk.

The remaining terms on the right hand side of equation 5.4 correspond to pressure-

strain interactions. Various models exist in literature and can be found to almost

any order desired [13, 19] however, there is little benefit to going beyond first or-

der. Typically the pressure-strain models can be thought of in three parts, the fast

pressure-strain interactions, the slow pressure-strain interactions, and any wall block-

age terms. The fast pressure-strain terms are those in which a model is based upon

the gradients in the flow field where ui,j = Sij + Wij. The strain tensor is given as

Sij = 1
2
(ui,j + uj,i) and the vorticity tensor is given by Wij = 1

2
(ui,j − uj,i). Thus any

terms involving velocity gradients (or components thereof) such as the CS
p2, CW

p2 , and

C∗
p2 terms are designated fast pressure-strain (or rapid) terms as they respond instan-

taneously to gradients in the velocity. The fast pressure-strain constants are given

as CS
p2 = CW

p2 = 0.6. The value of C∗
p2 = −0.2F 2( k

k+kr
)2, where F is a realizability

constraint given as F =det
(

3
2
Rij

)
.

The slow pressure-strain term comes from the assumption that (in the absence of

any production terms) pressure fluctuations should force any turbulence to isotropy.

Hence the slow pressure strain term is a linear return-to-isotropy model as was first

investigated by Rotta [20]. This well known model is given by Cp1 Ti(
2
3
δmn−Rmn) as

shown in the right hand side of equation 5.4. The inverse of the turbulent time scale

is Ti = ε/k. The slow pressure-strain term is defined as Cp1 = 0.6[2.5 − 1.5( k
k+kr

)].

This varies Cp1 from an average value of 0.6 at RANS to 1.5 in the DNS regime.
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The last term in equation 5.4 looks like a dissipation term, but is in fact, a

pressure-strain interaction term. The derivation of the normalized Reynolds stress

tensor (Rij = Rij/k) from Appendix G cancels dissipation exactly but leaves behind

this term. This last term can be considered a wall blocking term as it only contributes

if gradients in turbulent kinetic energy (k) or Rij become large (as they would near

walls). Because the test cases presented are on a periodic domain with no walls this

term has minimal contribution to the overall transport equation in this work.

5.2.2 Closure Equations

Equations 5.5 and 5.6 are similar to the previously shown k/ε model. However,

these equations are now used for closure of the RST equation with a few key differ-

ences. The production term P = Pk and turbulent viscosity are now given exactly

by the RST equation. The near wall term ε̂ = ε − 2(ν + νT

σε2
)(∂k1/2

∂xj
)2 from Perot

and Natu [17] is now included in the dissipation equation. The constants are fairly

standard model constants, Cε1 = 1.55, σε = 1.2, σε2 = 0.11, σk = 1.0, Cµ = 0.28.

As with the k/ε model, the parameter Cε2 = 11
6
f + 25

ReT
f 2 is sensitive to the local

turbulent Reynolds number ReT = k2

νε
of the modeled turbulence via the function

f = ReT

30
(
√

1 + 60
ReT

− 1) as per the analysis of Perot and de Bruyn Kops [16]. Once

again, this will vary Cε2 from its theoretical limits of 11/6 at high Reynolds numbers

to 3/2 at low Reynolds numbers. Any Reynolds number dependent Cε2 would proba-

bly be sufficient. For incompressible flow, the pressure in 5.3 is determined from the

constraint uj,j = 0.

51



www.manaraa.com

CHAPTER 6

RST SIMULATION RESULTS

A number of simulations were performed with the RST model using the same

isotropic decaying turbulence (Re=640) initial conditions used for the two-equation

universal k/ε model. The previous finite volume code was utilized with the addition

of the six transport equations needed for the evolution of the Reynolds stresses. A

staggered Cartesian grid (previously shown in Figure 3.1) was again implemented.

6.1 High Re Isotropic Decay

The high Re isotropic decaying turbulence test case was again chosen for validation

of the RST code. Simulations were performed on a 1x1x2 to 128x128x256 mesh size

and total kinetic energy predictions are shown in Figure 6.1.

The ordinate shows total kinetic energy (k + kr) normalized by the initial total

kinetic energy at time t=0.0, the abscissa τ , is given by simulation time (seconds)

non-dimensionalized by the inverse time scale ( εt

kt
) at time t=0.0 (where t indicates

total quantities). Since the same initial conditions were used for the RST code as the

k/ε model, the initial turbulent Reynolds number is once again, ReT =
k2

t

νεt
= 640.

The DNS results given by de Bruyn Kops [6] on a 768x768x1536 mesh using a Fourier

spectral method is given by the large circles. The RST code gives very similar results

to what was obtained for the k/ε model. The simulations in Figure 6.1 show that at

any mesh resolution, the model predicts the decay of the turbulence well. The very

lowest mesh resolution is clearly a RANS (or URANS) simulation and the largest
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Figure 6.1. RST model total kinetic energy predictions for (initial Re=640) isotropic
decaying turbulence.

mesh, 128x128x256, is a LES simulation (with the mesh size roughly in the inertial

range). The intermediate resolutions might be considered URANS, VLES, or LES.

6.1.1 Turbulent Kinetic Energy Ratio

Of more importance than total energy prediction is the investigation of how the

turbulence is behaving. This is shown in Figure 6.2.

The 1x1x2 solution is the top curve, with all its energy contained in the model

(giving a ratio of 1.0) and the largest RSTM simulation (128x128x256) is the bottom

line, with the smallest ratio of modeled kinetic energy (≈ 20 percent). As was men-

tioned for the two-equation model, the desired behavior is for these curves to stay

relatively constant but decrease slightly with time. As is observed, the curves indeed

follow the desired behavior and are almost identical to the previous k/ε results. It

must be noted that the desired behavior is now obtained without an explicit energy
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Figure 6.2. RST model ratio of modeled kinetic energy to total kinetic energy,
Re=640.

transfer function such as α. The simplistic k/ε model needed such a term to displace

energy appropriately (backscatter). It is clear that the energy is already being trans-

ferred appropriately by the pressure-strain Reynolds stress terms. Therefore adding

an extra ad-hoc function is not needed.

6.1.2 Perturbation of Initial Conditions

The final validation of the RST code is to see if it has a self-adaptive character.

A truly adaptive model is able to obtain the correct behavior from incorrect initial

conditions. This was previously tested in Chapter 3 for the k/ε model. Once again,

initial conditions were either smoothed or sharpened using a filtering operation. The

filter used to alter the initial conditions was a nearest neighbor averaging procedure,

ufiltered
ijk = βuijk + (1− β)(ui+1jk + ui−1jk + uij+1k + uij−1k + uijk+1 + uijk−1)

1
6
.
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Figure 6.3. 1D RSTM energy spectra for 64x64x128 case, Re=640 (Sharp, Normal,
Smooth).

For smoothing, β = 0 was used. This replaces the value at a mesh point by the

average of its nearest neighbors. This type of filter removes energy primarily from the

highly oscillatory modes with wavelengths close to the mesh size. In spectral terms it

damps the spectra in the region just above the cutoff wave number. Sharpening the

velocity field is performed by using β = 1.5. This adds energy to the existing high

frequency modes. The effect is shown in Figure 6.3, which shows the original initial

spectra (t=0.0) for the 64x64x128 simulation (normal, smooth, sharpened) as the

top three curves. The bottom three curves are the normal, smooth, and sharpened

spectra at some later time.

Figure 6.4 shows the affect of smoothing and sharpening the initial conditions

on the kinetic energy ratio. When smoothing is used, energy is removed from the

resolved modes. In order to keep the total kinetic energy the same, the model now

must start with more energy. The ratio therefore starts higher than before. As time
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Figure 6.4. RSTM ratio of modeled turbulent kinetic energy to total kinetic energy,
Re=640, for perturbed initial conditions.

proceeds the model achieves the same ratio irrespective of the initial conditions. At

early times, the smoothed solution has less error and therefore backscatters somewhat

more than the unperturbed initial condition. This removes energy from the model

and makes the ratio decrease faster, so that it approaches its original state.

A similar (but opposite) process happens when the spectra is sharpened. In this

case, the model senses that the mesh can not support the input resolved fluctuations,

and quickly sends that energy to the model. Note that the rate at which the model

adjusts to perturbed initial conditions depends on the mesh resolution. The higher

mesh resolutions adjust more rapidly. It is hypothesized that the time it takes to

transfer the energy scales on the timescale of the turbulence at the cutoff (transfer)

lengthscale (k/ε).

Although the ratio of ( k
k+kr

) indeed shows the correct behavior, a more definitive

test would be to see if the energy spectra for all three cases (sharp, normal, smooth)
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which are clearly not similar become similar at some later time. These spectra were

previously shown in Figure 6.3. As mentioned, the top three curves show the initial

energy spectra at (t=0.0) and the bottom three curves correspond to the spectra

at some later time, where the code is trying to correct itself. These spectra (almost

right on top of each other) along with the turbulent energy ratio clearly show that the

model is self-adapting and does indeed correct itself for perturbed initial conditions.

6.1.3 RST Scaling

The use of the mesh size to infer the lengthscale is why classic LES fails outside

of the inertial range (close to the DNS or RANS regimes), and one reason why the

self-adaptive model (which predicts the lengthscale and does not infer it) can operate

at any mesh size. However, the current model should still obtain the classical LES

behavior in its range of applicability. The lengthscale predicted by the model (Lm =

k3/2/ε) should be proportional to the mesh size, when the model is operating in the

LES regime. This was previously shown to be true in Chapter 3 for the k/ε model.

Figure 6.5 looks at predicted lengthscale (in log scale) at a fixed time t=0.5 for the

various meshes from the k/ε and RSTM simulations.

At small values of ∆x (large number of mesh points) it is obvious that the length-

scale is indeed a function of grid spacing as would be expected with classic LES. A

reference line has been added (dotted line) with a slope of 1.0 for comparison. Pre-

viously mentioned was that the k/ε model did not exactly match this reference line.

The RST model however, does match this reference line due to the fact that a sim-

plistic model (eddy viscosity model) is no longer used. The figure clearly shows how

the turbulent lengthscale is not related to the mesh spacing outside the LES regime.

Mesh resolutions smaller than 64x64x128 do not exhibit the linear behavior be-

cause now the relevant turbulent lengthscale is no longer related to the mesh size

for both systems. There is a transition region that one might call VLES(32x32x64),
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but not full LES. The 8x8x16 mesh for both systems might be considered the start

of URANS, where the largest scales can just be resolved, and unsteady 3D solutions

maintained. These smallest mesh sizes are where the solutions can not sustain a

cascade because all the largest turbulence has scales that are smaller than the mesh

size. Again it is pointed out that both systems show that near the 32x32x64 mesh

Figure 6.5. RSTM (diamonds) and k/ε (squares) lengthscale behavior at time =
0.5s.

resolution is a transition from VLES to an LES simulation. This supports the finding

by Carati et. al. [1] that the smallest mesh size possible for a classic (dynamic model)

LES simulation is 483.

6.2 Realizability Constraints

The Reynolds stresses are components of a second order tensor which is symmetric.

The diagonal stresses correspond to normal stresses while the off diagonal components
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represent shear stresses. This tensor is symmetric positive definite and must always be

so. Due to the nature of Reynolds stress transport modeling, enforcing the solution to

a set of partial differential equations to be symmetric positive definite can cause many

problems. This issue is called realizability. The methods used to enforce realizability

of the stress tensor are described below.

6.2.1 Turbulence Initial Conditions

The initial conditions used for modeled turbulent kinetic energy (k), dissipation

(ε), and velocity (u, v, w) were calculated as previously mentioned from the DNS fields.

The same initial fields used for the k/ε model are again used for the RST model. The

Figure 6.6. Calculation of resolved turbulent kinetic energy on a Cartesian grid.

calculation of the resolved turbulent kinetic energy is given by 1
2
(u2 + v2 + w2) and

is shown in Figure 6.6. In order to calculate this cell centered quantity, each velocity

component was first averaged to the cell center and then squared. For example, to

calculate resolved turbulent kinetic energy (kr), average 1
2
(ui,j + ui−1,j) to get uavg

as cell centered (repeat for v, w), then take 1/2(u2
avg + v2

avg + w2
avg) = kr. This
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averaging procedure for the resolved turbulent kinetic energy was used for both the

k/ε and RSTM system. It was found that averaging the velocity to the cell center

first and then squaring the result was optimal over squaring the velocity first and

then averaging to cell centers.

6.2.2 Reynolds Stress Initial Conditions

The initial conditions for the Reynolds stress tensor are a vital role for enforcing

realizability. Recall that this thesis uses a normalized Reynolds stress tensor where

Rij = Rij/k. The normalized Reynolds stress tensor is shown as

Rij =




R11 R12 R13

R21 R22 R23

R31 R32 R33




because of symmetry (R12 = R21) etc., only six of the nine terms are needed to

construct this tensor. The main problem is to insure that the eigenvalues of this tensor

are positive or zero (never negative). There are two parts to guarantee this. First

the initial condition must be realizable and secondly the solutions to the transport

equation must guarantee that this tensor stays realizable.

Unfortunately, starting the initial condition for the Reynolds stress tensor using

the eddy viscosity hypothesis did not guarantee realizability. Recall that the eddy

viscosity hypothesis is Rij = 2
3
δij − νT Sij/k. Although this approach works well for

the k/ε model, it did not guarantee realizability of the Reynolds stress tensor initially.

Modifications to this approach to force the tensor to be realizable where to no avail.

Another approach was to start the Reynolds stress tensor from the isotropic initial

condition. This is accomplished by setting the diagonal terms to 2/3 and off diagonal

terms to zero. Although this approach starts off realizable, it is a very poor initial

condition to start with.
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The best approach is to solve the steady-state normalized Reynolds stress equa-

tions (DRij

Dt
= 0) to get an accurate initial condition. This assumes quasi-equilibrium

and guarantees that the normalized stress tensor is initially realizable. This equation

was solved for on all mesh sizes from 1x1x2 to 128x128x256.

6.2.3 Reynolds Stress Averaging

With the initial conditions specified for the Reynolds stress code, it was found that

using different averaging procedures could also enforce or violate realizability. The

storage locations for the six Reynolds stresses are shown in Figure 6.7. The staggered

arrangement of the Reynolds stresses was chosen because it enforced realizability more

so than a collocated arrangement. Therefore all source / sink terms related to the

Reynolds stress transport equation were averaged to the locations shown in Figure

6.7.

Figure 6.7. Location of the Reynolds stresses.
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Having an arrangement as shown was beneficial in the calculation of the gradients

computed for the evolution of velocity. This equation is shown once again below.

∂ui

∂t
+

∂

∂xj

(ui uj) = − ∂p

∂xi

+ ν
∂2ui

∂xj∂xj

− ∂Rij

∂xj

(6.1)

Cell centered diagonal components (R11, R22, R33) will lie exactly on velocity control

volume faces where they are needed. Figure 6.8 illustrates this point. It is shown

(u velocity) that any cell centered quantity such as pressure (p), turbulent kinetic

energy (k), and diagonal stresses (R11, R22, R33) are indeed located at control volume

faces (where they should be). Therefore no averaging or interpolation is needed. Any

gradients associated with equation 6.1 are also computed at control volume faces.

For example, fluxes through the left face of the control volume around u(i,j,k) will

have a gradient (∂u
∂x

) which is calculated (Figure 6.8) automatically at the control

volume face (ui−ui−1

∆x
). Similarly any off diagonal terms will fall on control volume

faces (where they should be). The only difference for the off diagonal terms are that

any cell centered quantities such as (p) and (k) from equation 6.1 will no longer be

located on a control volume face. In order to calculate R12 = R12k, the model kinetic

energy (k) must be averaged to the R12 location. This is easy to correct by simply

averaging the 4 nearest cell centered quantities from their cell centered locations to

a control volume face.

It should be mentioned that care must be taken when calculating any source or

sink term with the staggered Rij arrangement. Particularly the RSTM production

term presents some difficulties in the averaging procedure. The exact production

term is given as P ij = −
(
Rik uj,k + Rjk ui,k

)
. Simply expanding this term out for

the P 11 case will yield terms much like R11
∂u
∂x

. Figure 6.9 shows velocity (u, v) and

cell centered (CC) locations. The R12 stress is also shown in the lower right corner

of the cell. It is obvious that the R11
∂u
∂x

term is easy to compute. The R11 is already

a cell centered quantity and the derivative ∂u
∂x

= ui,j−ui−1,j

∆x
is also cell centered. The
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Figure 6.8. Velocity (u) control volume averaging.

Figure 6.9. Control volume averaging for RST production terms.

63



www.manaraa.com

problem arises when any off diagonal terms are calculated such as P 12. For example

one component of the P 12 term would be R11
∂v
∂x

. Since the (v) velocity derivative is

calculated at the R12 location, the cell centered R11 must be averaged there also. As

mentioned above, this is accomplished by taking the average of the 4 neighboring cell

centered R11 values around R12.

Figure 6.10. Averaging procedure for RSTM code.

The most difficult part of this averaging procedure is when an off diagonal stress

derivative is needed at another off diagonal stress location. For example, if the deriva-

tive ∂R31

∂y
is required at the R12 location as shown in Figure 6.10. A central difference

is used to compute this derivative to the corners of the cell. Once the derivative

has been computed on each side of R12, it is then averaged to the correct location.

Needless to say, great care must be taken to average these quantities correctly.
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CHAPTER 7

CONCLUSIONS

The goal of this thesis is to demonstrate a new turbulence modeling approach

where RANS systems are used for subgrid-scale modeling in LES simulations at any

mesh resolution. The implication being that subgrid-scale turbulence is not funda-

mentally any different than regular turbulence. It can be modeled using the same

RANS ideas. The following is a summary of the important ideas presented in this

thesis.

• Existing RANS turbulence models can indeed be applied to LES simulations to

model subgrid-scale turbulence.

• Simplistic RANS models like a two-equation (k/ε) model will need a backscatter

term to appropriately displace energy from the resolved to unresolved fields

(vice-versa).

• More complex RANS models such as the RST model already have the ability

to backscatter energy appropriately and do not require ad-hoc modifications.

• Both systems exhibited a self-adaptive nature where the code had the ability

to correct itself from incorrect initial conditions without any user input.

• Both systems can operate from a RANS regime to LES to (with enough mesh)

a DNS solution with the user specifying only the mesh size.

• As future RANS turbulence models are developed, they can easily extend to

this framework in hopes of a more accurate and cost effective solution.
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The results shown indicate that this new modeling approach has the ability to give

fairly accurate predictions at any mesh resolution. The self-adaptive nature observed

in this method is certainly advantageous for any industrial applications. The code

is given the desired mesh resolution and will compute the best answer based on this

criteria alone. The user is not required to have advanced knowledge of the flow field

(as in LES) nor is the user restricted to modeling the entire flow (as in RANS). Instead

the approach presented finds the best solution possible based solely off the mesh size

the user can afford.
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APPENDIX A

DERIVATION OF THE EVOLUTION EQUATIONS

The incompressible Navier-Stokes equations are:

uk,k = 0 (A.1)

ui,t + (uiuk),k = −p,i + σik,k (A.2)

Following the ideas of Germano [8], the moment of A.2 is taken with uj, another

moment of this same equation with indices interchanged yields A.3 and A.4.

ujui,t + uj(uiuk),k = −p,iuj + ujσik,k (A.3)

uiuj,t + ui(ujuk),k = −p,jui + uiσjk,k (A.4)

Adding together A.3 and A.4 and using a little calculus, it can be shown that the

resulting equation can be written as:

(uiuj),t + (uiujuk),k = −
[
puiδjk + pujδik − ν (uiuj),k

]
,k

+ 2psij − 2νui,kuj,k (A.5)

if a Newtonian fluid σij = νui,j is assumed. Recall that the turbulent stress tensor

was previously defined as Rij = uiuj − ui uj , the double bracket was < ai, bj >

≡ aibj − āib̄j, and the turbulent transport term was defined by Tijk ≡ uiujuk −
ūiRjk − ūjRik − ūkRij − ūiūjūk . Simply averaging equations A.1, A.2, and A.5 and
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substituting for the stress tensor, double bracket, and turbulent transport will recover

the equations below:

uk,k = 0 (A.6)

ui,t + (uiuj),j = −p,i + νui,jj −Rij,j (A.7)

Rij,t + ūkRij,k = νRij,kk − (Rjkūi,k + Rikūj,k)

− Tijk,k − (< p,i, uj > + < p,j, ui >)− 2ν < ui,k, uj,k >
(A.8)

Hence it is shown that the averaging invariance procedure of Germano does indeed

provide evolution equations that are exactly the same as the Reynolds stress transport

(RST) equations.
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APPENDIX B

CPU NEIGHBORS

***********************************************************************
Subroutine CPU_neigh()
Implicit None
Integer :: iz,iy,ix, tmp

!!location in CPU grid
iz = myid/(NXP*NYP) + 1
tmp = myid-(iz-1)*NXP*NYP
iy = tmp/NXP + 1
ix = tmp -(iy-1)*NXP + 1

!Compute neighboring CPU locations below

CPU_info(1) = myid+1 !x-dir right
if ( ix == NXP) CPU_info(1) = CPU_info(1) - NXP

CPU_info(2) = myid-1 !x-dir left
if ( ix == 1 ) CPU_info(2) = CPU_info(2) + NXP

CPU_info(3) = myid+NXP !y-dir top
if ( iy == NYP) CPU_info(3) = CPU_info(3) - NXP*NYP

CPU_info(4) = myid-NXP !y-dir bottom
if ( iy == 1 ) CPU_info(4) = CPU_info(4) + NXP*NYP

CPU_info(5) = myid+NXP*NYP !z-dir back
if ( iz == NZP) CPU_info(5) = CPU_info(5) - NXP*NYP*NZP

CPU_info(6) = myid-NXP*NYP !z-dir front
if ( iz == 1 ) CPU_info(6) = CPU_info(6) + NXP*NYP*NZP

End Subroutine CPU_neigh
***********************************************************************

Integer ’myid’, is a variable MPI assigns to each processor in use. If eight pro-

cessors are used in parallel ’myid’ would range from 0 - 7. The variables NXP, NYP,
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and NZP correspond to the number of processors in each direction (x,y,z). The calcu-

lated integer, CPUinfo1, is the CPU located to the right of the processor in question.

CPUinfo2 computes the CPU to the left of the processor in question. CPUinfo3 and

CPUinfo4 correspond to the top and bottom CPUs respectively. Lastly, CPUinfo5

and CPUinfo6 are the back and front CPUs located relative to the CPU in question.

Further clarification by (top, bottom, etc.) was clearly shown in Figure 4.2.
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APPENDIX C

PERIODIC BOUNDARY CONDITION DATA TRANSFER

***********************************************************************
! Nonblocking MPI send x

Subroutine Send_BCX(NX,NY,NZ,var)
Implicit None
Integer :: NX,NY,NZ
Real, Intent(IN) :: var(0:NX+1,0:NY+1,0:NZ+1)
Integer :: num, tag1,tag2, cpu1,cpu2
Real :: tmp1,tmp2

num = (NY+2)*(NZ+2)
cpu1 = CPU_info(1)
cpu2 = CPU_info(2)
tag1 = tag+1
tag2 = tag+2

!Sending right y-z plane
sbuffx_r(0:NY+1,0:NZ+1) = var(NX,0:NY+1,0:NZ+1)
call mpi_isend (sbuffx_r,num,datasize,cpu1,tag1,MPI_COMM_WORLD,

handle_sx(1),ierr)

!Sending left y-z plane
sbuffx_l(0:NY+1,0:NZ+1) = var(1,0:NY+1,0:NZ+1)
call mpi_isend (sbuffx_l,num,datasize,cpu2,tag2,MPI_COMM_WORLD,

handle_sx(2),ierr)

!Receiving right y-z plane
call mpi_irecv (rbuffx_r,num,datasize,cpu1,tag2,MPI_COMM_WORLD,

handle_rx(1),ierr)

!Receiving left y-z plane
call mpi_irecv (rbuffx_l,num,datasize,cpu2,tag1,MPI_COMM_WORLD,

handle_rx(2),ierr)

End Subroutine Send_BCX
***********************************************************************
! Nonblocking MPI recieve - x
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Subroutine Recv_BCX(NX,NY,NZ,var)
Implicit None
Integer :: NX,NY,NZ , i
Real :: var(0:NX+1,0:NY+1,0:NZ+1)

! wait for recv and send to complete
call mpi_waitall(2,handle_sx,status_s,ierr) !wait for sends
call mpi_waitall(2,handle_rx,status_r,ierr) !wait for recvs

!from the left (high #)
!move data values from buffers into ghost cells
var(0,0:NY+1,0:NZ+1) = rbuffx_l(0:NY+1,0:NZ+1)

!from the right CPU (low #)
!move data values from buffers into ghost cells
var(NX+1,0:NY+1,0:NZ+1) = rbuffx_r(0:NY+1,0:NZ+1)

End Subroutine Recv_BCX
***********************************************************************
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APPENDIX D

TYPICAL MPI FUNCTIONS USED

Great detail explaining MPI function calls can be found at:
http://www-unix.mcs.anl.gov/

Below are a selection of the main function calls used in this thesis.
***********************************************************************
MPI_Isend( void *buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm, MPI_Request *request )

MPI_Irecv( void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request )

Input Parameters:
buf: initial address of send/recieve buffer (choice).
count: number of elements in send/receive buffer (integer).
datatype: datatype of each send/receive buffer element (handle).
source: rank of source (integer).
dest: rank of destination (integer).
tag: message tag (integer).
comm: communicator (handle).

Output Parameter
request: communication request (handle)

All MPI routines in Fortran have an additional argument ierr at the end of
the argument list.
***********************************************************************
MPI_Send( void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm )

MPI_Recv( void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status )

Input Parameters:
buf: initial address of send/receive buffer (choice)
count: number of elements in send buffer (nonnegative integer)
datatype: datatype of each send/receive buffer element (handle)
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dest: rank of destination (integer)
tag: message tag (integer)
comm: communicator (handle)

Output Parameters:
buf: initial address of receive buffer (choice)
status: status object (Status)
***********************************************************************
MPI_Waitall(

int count,
MPI_Request array_of_requests[],
MPI_Status array_of_statuses[] )

Input Parameters:
count: lists length (integer).
array_of_requests: array of requests (array of handles)

Output Parameter: array_of_statuses
array of status objects (array of Status). May be MPI_STATUSES_IGNORE
***********************************************************************
MPI_Allreduce ( void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm )

Input Parameters:
sendbuf: starting address of send buffer (choice)
count: number of elements in send buffer (integer)
datatype: data type of elements of send buffer (handle)
op: operation (handle)
comm: communicator (handle)

Output Parameter:
recvbuf:
starting address of receive buffer (choice)
***********************************************************************
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APPENDIX E

GLOBAL VALUES

***********************************************************************
Real Function pSUM(var)
Implicit None
Real :: num, var(:,:,:)
Real :: data_G

num = SUM(var)

if (numprocs > 1) then
Call MPI_Allreduce(num,data_G,1,datasize,MPI_SUM,MPI_COMM_WORLD,

ierr) !MPI_REAL
pSUM = data_G

else
pSUM = num

end if

End Function pSUM
***********************************************************************
Real Function pMAXVAL(var)
Implicit None
Real :: num, var(:,:,:)
Real :: data_G

num = MAXVAL(var)

if (numprocs > 1) then
Call MPI_Allreduce(num,data_G,1,datasize,MPI_MAX,MPI_COMM_WORLD,

ierr) !MPI_REAL
pMAXVAL = data_G

else
pMAXVAL = num

end if

End Function pMAXVAL
***********************************************************************
Real Function pMINVAL(var)
Implicit None
Real :: num, var(:,:,:)
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Real :: data_G

num = MINVAL(var)

if (numprocs > 1) then
Call MPI_Allreduce(num,data_G,1,datasize,MPI_MIN,MPI_COMM_WORLD,

ierr) !MPI_REAL
pMINVAL = data_G

else
pMINVAL = num

end if

End Function pMINVAL
***********************************************************************
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APPENDIX F

DATA OUTPUT

***********************************************************************
Subroutine TKE_OUT(dir)
Implicit None
Real :: uJ(0:DNX+1,0:DNY+1,0:DNZ+1)
Real,dimension(0:NX+1,0:NY+1,0:NZ+1) :: rbuff
Real :: intsend(1:3),intrecv(1:3)
Integer :: sendcount,recvcount,root,tag,tag2,ierr,ss(MPI_STATUS_SIZE)

!(NXP, NYP, NZP, il, jl ,kl) are computed exactly as in input
root = 0 !assign root processor to be myid = 0.
recvcount = ((NX+2)*(NY+2)*(NZ+2)) !size of data to be sent
sendcount = recvcount !size of data to be received.

If (myid == 0) Then

!Store root processor data section into larger array (uJ).
uJ( NX*(il-1):(il*NX)+1 , NY*(jl-1):(jl*NY)+1, NZ*(kl-1):(kl*NZ)+1 ) =
tke(0:NX+1, 0:NY+1, 0:NZ+1)

!After storing root information, receive the values (myid, il, jl, kl)
!from all other processors

do i = 1, numprocs-1 !loop over all processors (exept root)

!Now receive data from processor "i"
Call MPI_RECV(rbuff,recvcount,datasize,i,tag,MPI_COMM_WORLD,ss,ierr)

!Now receive (il,jk,kl) from the processor that just sent data
Call MPI_RECV(intrecv,3,datasize,i,tag2,MPI_COMM_WORLD,ss,ierr)

!with myid known, along with (il,jl,kl) reconstruct the large array (uJ)
!from the receive buffer.
uJ( NX*(il-1):(il*NX)+1 , NY*(jl-1):(jl*NY)+1, NZ*(kl-1):(kl*NZ)+1 )
= rbuff(0:NX+1, 0:NY+1, 0:NZ+1)

end do !stops loop on root
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!!!!! now write out total domain to binary file.
open (unit=500,file=trim(str1),form=’binary’)
write(500) (((uJ(i,j,k),i=1,DNX),j=1,DNY),k=1,DNZ)
close(unit=500)

Else

!If processor is not root, then send your tke data to root.
Call MPI_SEND(tke,sendcount,datasize,root,tag,MPI_COMM_WORLD,ierr)

!store il,jl,kl in an array called (intsend)
intsend(1) = real(il)
intsend(2) = real(jl)
intsend(3) = real(kl)

!Now send values of (il,jl,kl) to root.
Call MPI_SEND(intsend,3,datasize,root,tag2,MPI_COMM_WORLD,ierr)

End If

Return
End Subroutine TKE_OUT
***********************************************************************
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APPENDIX G

NORMALIZED RST MODEL DERIVATION

The transport equations for k and ε are shown below.

∂k

∂t
+

∂

∂xj

(kuj) =
∂

∂xj

[(ν +
νT

σk

)
∂k

∂xj

] + P − ε (G.1)

∂ε

∂t
+

∂

∂xj

(εuj) =
∂

∂xj

[(ν +
νT

σε

)
∂ε

∂xj

] +
ε

k
Cε1P − ε̂

k
Cε2ε (G.2)

The RST model used in this thesis is given below.

∂Rmn

∂t
+

∂(ujRmn)

∂xj

=
∂

∂xj

[
(ν + νT )

∂Rmn

∂xj

]
+ Pmn

+ CS
p2(SmjRjn + SnjRjm +

P

k
Rmn)

+ CW
p2 (WmjRjn + WnjRjm)

+ Cp1(
2

3
εδmn − TiRmn)− TiRmn

+ C∗
p2kSmn − 2ν

(
∂k

∂xj

∂Rmn

∂xj

)
(G.3)

The normalized Reynolds stress tensor is defined as Rmn = Rmn

k
. Using a normalized

Reynolds stress tensor is advantageous because the simulation will require less mesh

resolution near walls. Although there are no walls presented in this thesis, future

work would most certainly incorporate walls into the existing code for channel flow.

The evolution of the normalized stress tensor can be shown as D
Dt

(
Rmn

k

)
= 1

k
D(Rmn)

Dt
−

Rmn

k2
D(k)
Dt

. Substituting equations G.1 and G.3 into this expression and utilizing a little

calculus yields the evolution of the normalized Reynolds stresses (Rij).
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∂Rmn

∂t
+

∂(ujRmn)

∂xj

=
∂

∂xj

[
(ν + νT )

∂Rmn

∂xj

]
+ Pmn − P Rmn

+ CS
p2(SmjRjn + SnjRjm + P Rmn)

+ CW
p2 (WmjRjn + WnjRjm)

+ Cp1(Ti)(
2

3
δmn −Rmn)

+ C∗
p2Smn + 2νT

(
1

k

∂k

∂xj

∂Rmn

∂xj

)
(G.4)

The above equation predicts the evolution of Rij where Rij = Rij

k
. The constants

and functions used for equations G.1, G.2, and G.4 now given. The typical model

constants used are σk = 1.0, σε = 1.2, and Cε1 = 1.55. The parameter Cε2 =

11
6
f + 25

ReT
f 2 is sensitive to the local turbulent Reynolds number ReT = k2

νε
of the

modeled turbulence via the function f = ReT

30
(
√

1 + 60
ReT

− 1) as per [16].

The turbulent viscosity is given as νT = Cµ F k
Ti

( k
k+kr

) where Cµ = 0.28. The RST

production term is given by P ij = −
(
Rik uj,k + Rjk ui,k

)
. The value of P = 1

2
P ii

is calculated for the RST and closure equations where P = Pk. Gradients in the

flow field are ui,j = Sij + Wij. The strain tensor is given as Sij = 1
2
(ui,j + uj,i)

and the vorticity tensor is given by Wij = 1
2
(ui,j − uj,i). The high pressure strain

constants are given as CS
p2 = CW

p2 = 0.6. The value of C∗
p2 = −0.2F 2( k

k+kr
)2, where F

is a realizability constraint given as F =det
(

3
2
Rij

)
. The inverse of the turbulent time

scale is Ti = ε/k. The slow pressure strain term is defined as Cp1 = 0.6[2.5−1.5( k
k+kr

)].
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APPENDIX H

K/ε MODEL CONSTANTS

Numerous testing of the k/ε code revealed two constants that can greatly influence

the turbulent energy predictions. These two constants Cµ and C∗ are included in the

energy transfer variable (α). Below is a brief description each has on the energy

predictions for the 16x16x32 mesh resolution.

Figure H.1. Effect of changing Cµ and C∗ on the k ratio.

Figure H.1 shows the combined results for each constant. The first constant Cµ

is shown to push the initial transient on the ratio’s down when it is decreased. The

opposite is observed when it is increased. This constant also has the effect of raising

the total predictions upward when Cµ is decreased, and brings the total predictions

down when Cµ is increased (Total predictions are not shown).
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Figure H.1 also shows that the constant C∗ has more of an effect on the tail end

of the energy ratio. Increasing this constant will push the tail end of these curves

downward. The opposite is observed when it is decreased. This constant has almost

no effect on the total energy predictions.
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APPENDIX I

RSTM CONSTANTS

Numerous testing of the RSTM code resulted in six constants/functions that ap-

peared to have more of an effect on the turbulent kinetic energy ratio’s and totals.

These six constants/functions are Cp1, CS
p2, CW

p2 , C∗
p , σε2, and Cµ. Below is a brief

description each has on the energy predictions for the 16x16x32 mesh resolution.

I.1 Cp1 Contribution

Figure I.1. Effect of changing RSTM Cp1 function on k ratio.

The function Cp1 = 0.6(2.5 − 1.5 k
k+kr

), Figure I.1 and I.2 shows what happens

when the 0.6 constant in this function is varied. Increasing the overall value of Cp1

drives the ratio downward and brings the total slightly upward. The opposite is

observed when Cp1 is decreased.
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Figure I.2. Effect of changing RSTM Cp1 function on k total.

I.2 CS
p2 and CW

p2 Contribution

Figure I.3. Effect of changing RSTM constants CS
p2, CW

p2 on k ratio.

Figure I.3 shows what happens when the constants CS
p2 and CW

p2 are varied on the

ratio. Increasing CS
p2 drives the ratio down very quickly and decreasing CS

p2 brings

the ratio upwards as shown. The constant CW
p2 has an insignificant effect on the ratio.
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The total predictions are shown in Figure I.4. The constant CW
p2 is not shown here

because it has no contribution to the total predictions. However, the CS
p2 term raises

the total when it is increased and lowers the total when it is decreased.

Figure I.4. Effect of changing RSTM constants CS
p2, CW

p2 on k total.
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I.3 C∗
p Contribution

Figure I.5. Effect of changing RSTM function C∗
p on k ratio.

The function C∗
p2 = −0.2F 2( k

k+kr
)2 has the ability to backscatter. It was observed

that positive values of C∗
p backscatter more and negative values incur more forward

scatter. The C∗
p term has a −0.2 constant out front. Figure I.5 shows the affect

of changing this constant. Here it is shown that decreasing this constant to a more

negative number −0.4 drives the ratio upwards. Increasing the constant to a positive

number +0.2 drives the ratio downwards (much the same as CS
p2). Looking at Figure

I.6 it is clear that negative values for C∗
p push the total downward and positive values

bring the total prediction up.
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Figure I.6. Effect of changing RSTM function C∗
p on k total.

I.4 σε2 Contribution

Figure I.7. Effect of changing RSTM constant σε2 on k ratio.

The constant σε2 = 0.11 is included in the near wall dissipation term. Because

this constant is in the dissipation equation, it has the effect of greatly varying the

energy predictions from the code. Figure I.7 shows that increasing this constant will
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raise the energy ratio and decreasing significantly pushes the ratio downwards. Figure

I.8 shows the effect this constant has on the total predictions. By increasing σε2, the

total is brought upwards. Decreasing σε2 pushes the totals down.

Figure I.8. Effect of changing RSTM constant σε2 on k total.
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I.5 Cµ Contribution

Figure I.9. Effect of changing RSTM constant Cµ on k ratio.

The constant Cµ is used for the calculation of the turbulent viscosity. Figure I.9

shows that decreasing this constant will bring the ratio’s upward. Increasing this

constant will push the ratio down. Figure I.10 shows that increasing Cµ will raise the

totals slightly and decreasing Cµ will bring the totals down slightly. However, Cµ has

most of its effect on the ratio’s as the effect on the total energy prediction is hardly

noticeable.
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Figure I.10. Effect of changing RSTM constant Cµ on k total.

I.6 Final Remarks on RSTM Constants

These six constants appeared to have the most effect on the overall results from

the RSTM code. However, it should be noted that other model constants also have

some effect on the results. The figures shown were all demonstrated with a 16x16x32

mesh resolution. Other mesh sizes will produce similar (but slightly different) results.

Hence, great care must be taken when trying to balance these constants to give the

correct energy predictions for all mesh sizes.
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